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Experiment 1 

Measurement of Density 

1. Purpose 

To learn how to measure physical quantities with the vernier caliper and the micrometer 

caliper and how to analyze data with the propagation of uncertainty. 

2. Introduction 

Measurement is an experimental process of obtaining the value of a physical quantity. 

Experience has shown that no measurement, however carefully made, can be completely free 

of uncertainties. For the whole structure and application of science depends on measurements, 

the ability to evaluate these uncertainties and keep them to a minimum is crucially important. 

In other words, an experiment is not complete until an analysis of the uncertainty in the final 

result to be reported has been conducted. Therefore, this experiment focuses on the 

measurement of densities, where the propagation of uncertainties should be considered since 

we cannot obtain the density of the measurand directly, with the hope that students can get 

familiar with the techniques of data analysis. 

3. Theory 

Uncertainty analysis is the evaluation of uncertainty in measurement. The word uncertainty 

in science does not carry the meanings of the terms mistake or blunder. In contrast, it would 

inevitably occur to all measurements. As such, uncertainties are not mistakes; you cannot 

eliminate them by being very careful. The best you can hope to do is to ensure the errors are 

as small as reasonably possible and to have a reliable estimate of how large they are.  

 3.1 Standard Form for Stating Uncertainties1 

In general, since we do not know the answer before measurements, it is only an estimate 

of the value of the measurand and thus is complete only when accompanied by a statement of 

the uncertainty of that estimate. The standard form for reporting a measurement of a physical 

quantity x  is 

best(measured value of  )x x x=  ,                    (3.1) 

                                                 
1 John R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. 

(University Science Books, Sausalito, 1997). 
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 where  

best  (best estimate for )x x=  

 and  

 (an estimate of an uncertainty in the measurement)x =  

Also, the difference between two measured values of the same quantity is the discrepancy. You 

may find the meaning of the range bestx x−  to bestx x+  somewhat vague, thinking it tells 

us we are absolutely certain the measured quantity lies in a range. Unfortunately, in most 

scientific measurements, such a statement is hard to make. We cannot state percent confidence 

in our margins of uncertainty until we understand the statistical laws that govern the 

process of measurement. We will return to this point later. For now, let us be content with 

defining the uncertainty x   so that we are “reasonably certain” the measured quantity lies 

between bestx x−  and bestx x+ . 

3.1.1 Significant Figures 

 Because the quantity x  is an estimate of uncertainty, obviously it should not be stated 

with too much precision. If we measure the acceleration of gravity g , it would be absurd to 

state a result like 

2(measured ) 9.821 0.02325 mg
s

=                    (3.2) 

The uncertainty in the measurement cannot conceivably be known to four significant figures. 

Instead, uncertainties should be stated with only one or two significant figures for more precise 

uncertainty has no meaning, noting that we usually choose to state the uncertainties with two 

significant figures in high-precision work. Thus, if some calculation yields the uncertainty 

20.02385 mg
s

 =  , this answer should be rounded up to 20.024 mg
s

 =  , and the 

conclusion (3.2) should be rewritten as  

2(measured ) 9.821 0.024 mg
s

=                     (3.3) 

Once the uncertainty in a measurement has been estimated, the significant figures in the 

measured value must be considered. A statement such as  

measured speed 6051.78 30 m
s

=                    (3.4) 
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is obviously ridiculous. The uncertainty of 30 means that the digit 5 might really be as small as 

2 or as large as 8. Clearly, the trailing digits 1,7, and 8 have no significance at all and should be 

rounded. That is, the correct statement of (3.4) is 

measured speed 6050 30 m
s

=                     (3.5) 

The general rule for stating answers is that the last significant figure in any stated answer should 

usually be of the same order of magnitude (in the same decimal position) as the uncertainty. Note 

that the uncertainty in any measured quantity has the same dimensions as the measured quantity 

itself. Therefore, writing the units ( m s , 
3cm , etc.) after both the answer and the uncertainty is 

clearer and more economical. By the same token, if a measured number is so large or small that 

it calls for scientific notation (the use of the form 
33 10  instead of 3000 , for example), then 

it is simpler and clearer to put the answer and uncertainty in the same form. For example,  

( ) 19measured charge 1.61 0.05 10−=    coulombs 

is much easier to read and understand than in the form 

19 21measured charge 1.61 10 0.05 10− −=     coulombs 

3.1.2 Fractional Uncertainty 

  If x  is measured in the standard form bestx x , the fractional uncertainty in x  is 

best

fractional uncertainty 
x

x


=                      (3.6) 

and the percent uncertainty is just the fractional uncertainty expressed as a percentage (that is, 

multiplied by 100%). For example, the result (3.5) can be rewritten as 

measured speed 6050 0.0050m
s

=                     (3.7) 

or  

measured speed 6050 0.50%m
s

=                     (3.8) 

Note that bestx x  is a dimensionless quantity and keep in mind that for quantities that are 

very hard to measure, a 10% uncertainty would be regarded as an experimental triumph. Large 

percentage uncertainties do not necessarily mean that measurement is scientifically useless. 
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Also, as you relate fractional uncertainty with the idea of significant figures, you should 

understand why no more than two significant figures should be stated for the uncertainties. 

3.1.3 Propagation of Uncertainties 

Most physical quantities usually cannot be measured in a single direct measurement but are 

instead found in two distinct steps. For example, to find the momentum p  of a car, we should 

first measure its mass m  and its velocity v , and then use these values to calculate its 

momentum. To do so, we unavoidably have to estimate the uncertainties in the quantities 

measured directly and then determine how these uncertainties ( ),  m v   “propagate” through 

the calculations to produce an uncertainty in the final answer ( )p . Here, we would only give 

the rules of propagation of uncertainties instead of providing a rigorous proof due to the 

complexity. However, you are encouraged to come back and study the reasons why by yourself 

after learning more about the statistics. For now, let’s focus on how to deal with the propagation. 

Suppose that two independent and random quantities  and x y  are measured with 

uncertainties ,x y  . We have uncertainty in sum and difference to be  

 ( ) ( ) ( )
2 2

x y x y   = +                         (3.9) 

in product and quotient to be 

( ) ( )
22

x y xy x y

x yx y xy

     
= = +   

   
                   (3.10) 

 and in powers to be 

    
( )y

y

x x
y

xx

 
=                             (3.11) 

In general, for n  independent and random quantities, the uncertainty is the quadratic sum 

( ) ( ) ( )
22

1 1n nx x x x  + + = + +                    (3.12) 

1
2 22 2

1 1 1

1 11

1

n

n n n

n nn

n

x x

y y x yx y

x x y yx x

y y


  

  
 

         = + + + + +                    

 

      (3.13) 

3.1.4 Classification of Uncertainties 

So far, we have discussed how to state and how to propagate uncertainties in a standard 

way. While facing repeated observations with different results, it is natural to ask ourselves 

which value is the most representative and what confidence level can we have in that value and 
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the method we use is to introduce the best estimate as well as the uncertainty to state the result. 

For n  independent determinations kX  of X , the best estimate is usually taken as the 

arithmetic mean or average of n  independent determinations, that is 

best
1

1 n

i
i

X X X
n

=

= =                          (3.14) 

As for the uncertainties, according to the International Standard Organization (ISO) 2 , 

uncertainties that occur can be classified into two types, called type A and type B:  

(i) Type A standard uncertainties, evaluated through the statistical analysis considering the 

random effects which make the individual observations kX  differ in value, are defined to 

be the standard deviations of the averages. The experimental variance of the observations, 

estimating the variance 
2  of the probability distribution of kX , is given by  

( )
22

1

1

1

n

X i
i

X X
n


=

= −
−
                       (3.15) 

This estimate of variance and its positive square root X , termed the experimental 

standard deviation, characterize the variability of the observed values kX , or more 

specifically, their dispersion about their mean X . Now, to avoid confusion, it’s better to 

define another random variable XA , the averages obtained by different and independent 

trials. Therefore, the best estimate of the variance of the mean is given by  

( )  ( )
2

22 2

X

X
X A X XVar A E A E A

n


  = = − =

 
            (3.16) 

where  E X  stands for the expectation value for the quantity X . The Type A standard 

uncertainty ( )Au X  is therefore obtained by 

   ( ) ( )
( )
( )

2

1

1X

n
iiX

A X A

X X
u X Var A

n nn


 =

−
= = = =

−


        (3.17) 

Note that in (3.15), the standard deviation should be defined by the factor 1N −  

instead of N  due to Bessel correction which will not be proven here, and that (3.16) 

                                                 
2 BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, Evaluation of Measurement Data—Guide to the Expression 

of Uncertainty in Measurement (International Organization for Standardization, Geneva, 2008 
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stands only if kX  are n  independent observations of the quantity X . Also, as expected, 

the best estimate of the variance of the mean ( )Au X  approaches to 0 , as long as the 

number of trials n  is large enough when the random effect would averagely not influence 

the measurements at all. 

(ii) Type B standard uncertainties are evaluated by non-statistical information such as 

instrument characteristics considering the systematic effects which result in discrepancies 

between the measurand values and the reference value that remain constants or change 

predictably in replicated measurements. The pool of information may include previous 

measurement data, manufacturer’s specifications, data provided in calibration, 

uncertainties assigned to reference data taken from handbooks, or simply the experience. 

If the estimate kX  is taken from a manufacturer’s specification, calibration 

certificate, handbook, or other source and its quoted uncertainty is stated to be a particular 

multiple of a standard deviation, the standard uncertainty ( )B ku X  is simply the quoted 

value divided by the multiplier, and the estimated variance ( )2
B ku X  is the square of that 

quotient. For example, a calibration certificate states that the mass of a stainless steel mass 

standard sm  of nominal value one kilogram is 1000.000325 g and that “the uncertainty 

of this value is 240 g  at the three standard deviation level.” The standard uncertainty of 

the mass standard is then simply  

( )
240 

80 
3

B s
g

u m g


= =                    (3.18) 

On the other hand, if the uncertainty is not provided by the manufacturer, it can still 

be roughly calculated by  

( )
2 3

B
a

u X =                          (3.19) 

where a  is the minimum scale value of the instrument. Note that in (3.19), we have 

assumed that it is equally for kX  to lie anywhere within the interval 
2

a
X −  to 

2

a
X +  

(a uniform or rectangular distribution of possible values) for practical purposes.  

Last but not the least, after obtaining Type A uncertainty and Type B uncertainty, the combined 

standard uncertainty ( )cu X  for independent input quantities kX  is therefore determined by 

( ) ( ) ( )2 2
C A Bu X u X u X X= + =                 (3.20) 
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 where X  is the best estimate of the uncertainty in the measurement of kX . 

3.1.5 Example: Measurement of the volume of a cubic block 

To obtain the volume, the side length of a cubic block should be measured first, and the 

results kL  are shown in Table1 with the minimum scale value of the ruler to be 1 mm . 

Table1. measured values of the side length  

No 1 2 3 4 5 6 7 8 

Value(mm) 22.1 22.0 21.9 21.8 21.8 21.7 21.9 22.0 

No 9 10 11 12 13 14 15 16 

Value(mm) 21.9 22.0 21.9 22.1 21.9 21.8 22.0 21.8 

 (i) Best estimate for the side length: (by 3.14) 

16

1
best 21.931 21.931 (mm)

16

ii
L

L L == = = 


 

 (ii) Type A standard uncertainty: (by 3.16) 

( ) ( )
( )
( )

16

1
0.0373... 0.037 (mm)

16 16 116

iiL
A L

L L
u L Var A

 =
−

= = = = 
−


 

 (iii) Type B standard uncertainty: (by 3.19) 

( )
1 ( )

0.2886... 0.29 (mm)
2 3

B
mm

u L = =   

 (iv) Combined standard uncertainty: (by 3.20) 

( ) ( ) ( )2 2 0.291 0.30 (mm)C A Bu L u L u L L= + =    

 (v) Measured value of the side length: 

( )best(Measured side length ) 21.93 0.30 (mm)CL L L L u L= + = + =   

 (vi) Best estimate for the volume of the cubic block: 

( )
3 3 3

best 21.93 10546.683... 10546.68 (mm )V L= = =   

 (vii) Best estimate for the uncertainty of the volume: (by 3.11) 

( )
3

3
best

3 0.30
3 0.041 

21.93

L
V L

V LL


 

 
   = = =   

( ) 310546.68 0.041 432.4... 440 (mm )V =  =   

 (viii)Calculated volume of the cubic block: 
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3
best 10546.68 440 10547 440 (mm )V V V=  =     

  or 

310547 mm 4.2%V =   

3.2 Statistical Analysis of Random Uncertainties 

As noted before, uncertainties are classified into two groups: Type A standard uncertainty 

or the random uncertainties, which can be treated statistically and be revealed by repeating the 

measurements, and Type B standard uncertainty or the systematic uncertainties, which cannot. 

To get a better feel for the difference between random and systematic uncertainties, consider the 

analogy shown in Figure 1. Here the “experiment” is a series of shots fired at a target; accurate 

“measurements” are shots that arrive close to the center. Random effect is caused by anything 

that makes the shots arrive at randomly different points, such as fluctuating atmospheric 

conditions between the marksman and the target. Systematic effect arises if anything makes the 

shots arrive off-center in one “systematic” direction, such as misaligned gun slights.  

Although Figure 1 is an excellent illustration of the random effect and the systematic effect, 

it is, however, misleading in one important respect. Because each of the two pictures shows the 

position of the target, we can tell at a glance whether a particular shot was accurate or not. 

Nonetheless, in real-life experiments, we do not know the true value of the measurand; that is, 

we do not know the accurate position of the target, which tells that we can easily assess the 

random effect but get no guidance concerning the systematic effect in most real experiments. 

 

 

 

 

 

 

 

 

Figure 1. Random and systematic effect in target practice. The random effect is larger in (a), 

compared to (b), and the systematic effect is larger in (b), compared to (a). 

Therefore, systematic uncertainties are usually hard to evaluate and even to detect. The 

experienced scientist has to learn to anticipate the possible sources of systematic effect and to 

make sure that all systematic effect is much less than the required precision. Also, the reference 

value or the most probable value of the best estimate for the measurands relies on differently 

and independently repeated measurements under the same condition to determine.  

3.2.1 Common probability distribution－Normal distribution3 

                                                 
3 Ifan G. Hughes and Thomas P. A. Hase, Measurements and Their Uncertainties: A Practical Guide to Modern Error 

Analysis (Oxford U. P., Oxford, 2010). 

(a)         (b) 
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For measurements with random effect, the distribution is called the normal, or Gaussian 

distribution, also referred to as the “bell curve.” Mathematically, it is a two-parameter function: 

( )
2

2

1
( ) exp

2 2

x x
f x

  

 
− 

= − 
  

                     (3.21) 

which describes the distribution of the data about the mean, x , with standard deviation  . 

Many real-life data sets have bell-shaped distribution and are approximately symmetric about 

the mean for the random effect.  

Figure 2 (a) shows about 68%, 95%, 99,7% of the data lie within 1, 2, 3 standard deviation 

of the mean, or the interval  to x x − + , 2  to 2x x − + , 3  to 3x x − + , respectively. 

Figure2 (b) shows the functional form of three normalized Gaussian distributions, each with 

standard deviations of 1 2,  1,  and 2 , respectively. Each curve has its peak centered on the mean, 

is symmetric about the value, and has an area under the curves equal to 1. While there are many 

possible definitions of the “width” of a Gaussian distribution, including Full Width at Half 

Maximum (FWHM), the ( )1 e  width, the ( )21 e  width, each version is proportional to the 

standard deviation; therefore, we can say that the larger the standard deviation, the broader the 

distribution, and correspondingly lower the peak value. 

 

 

    

 

 

 

 

 

 

 

Figure 2. Functional forms of the normalized normal distributions. (a) The percentage of data 

within the interval  to x x − + , 2  to 2x x − + , 3  to 3x x − + , respectively. (b) 

Gaussian distributions, each with standard deviations of 1 2,  1,  and 2 , respectively, and an area 

under each curve equal to 1. 

Recall the claim at the beginning of Section 3.1, that the standard deviation x  

characterizes the average uncertainty of the measurements kX . We can now tell that if the same 

quantity X  is measured many times under the same condition, and if all the sources of 

uncertainty are small and random, then the results will be distributed nearly around the average 

under the bell-shaped curve. In particular, approximately 68% of your results will fall within a 

(a)           (b) 
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distance X  on either side of X ; that is, 68% of your measurements will fall in the range 

XX  . In other words, if you make a single measurement under the same condition, the 

probability is 68% that your result will be within the interval  to X X − + . Thus, we can 

adopt X  to mean exactly what we have been calling “uncertainty.” If you make one 

measurement of X , the uncertainty associated with this measurement can be taken to be  

XX =  

with this choice, you can be 68% confident the measurement is within X  of the best estimate. 

4. Apparatus 

  

 

  

vernier caliper micrometer caliper straight ruler electric balance precision balance 

5. Procedures 

(1) Pre-lab assignments (hand in before the experiment with no more than 2 pages A4) 

1. Read the instructions for use of the vernier caliper and the micrometer caliper carefully 

to understand how to use them to measure the quantities  

2. Get familiar with the theory and make tables for the experiment in excel 

3. Take no more than one page to make a flowchart of this experiment and to summarize 

the five most important ideas of this material 

4. Answer the following questions on the other side of your paper. 

 (i) Rewrite each of the following measurements in its most appropriate form 

  (a) 8.123456 0.0312 m sv =   

  (b) 
43.1234 10 2 mx =    

  (c) 7 95.6789 10 3 10  kgm − −=     

(ii) In an experiment with a simple pendulum, a student decides to check whether the 

period T  is independent of the amplitude A  (defined as the largest angle that 

the pendulum makes with the vertical during its oscillations). He obtains the 

results shown in the Table .  
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Amplitude  (deg)A  Period  (s)T  

5 2  1.932 0.005  

17 2  1.94 0.01  

25 2  1.96 0.01  

40 2  2.01 0.01  

53 2  2.04 0.01  

67 2  2.12 0.02  

(a) Draw a graph of T  against A . (Consider your choice of scales carefully. 

If you have any doubt about this choice, draw two graphs, one including the 

origin, 0A T= = , and one in which only values of T  between 1.9  and 

2.2 s   are shown.) Should the student conclude that the period is 

independent of the amplitude?  

(b) Discuss how the conclusions of part (a) would be affected if all the measured 

values of T  had been uncertainty by 0.3 s . 

(2) In-lab activities 

 1. Calibrate the instruments to avoid the zero-point errors 

 2. Obtain the densities of objects assigned by the lab instructor. 

(i) Use the electric balance, the straight ruler, the vernier caliper, and the micrometer 

caliper to independently measure the quantities you need while calculating the 

densities of the given objects 20 times and record the data in the excel tables 

(ii) Calculate the average values, the standard deviations, and the average standard 

deviations of the quantities you measured, and report them in the standard forms 

(iii) Calculate the values of the densities by the propagation of uncertainty, and report 

the results in the standard forms  

(iv) Use the Archimedean method to obtain the densities of the objects without the 

straight ruler, the vernier caliper and the micrometer caliper and report the results 

in the standard forms 

   (v) Compare your results of the measurement, and redo the experiments if necessary 

(3) Post-lab report 

1. Recopy and organize your data from the in-lab tables in a neat and more readable form 

2. Analyze the data you obtained in the lab and answer the given questions 

6. Questions 

(1) While measuring the height and the diameter of a cylinder metal rod, why should you do 

the procedures at different points of the rod and from different directions each time? 

(2) While using the ruler to measure the length of the measurand several times, why should 

you take different parts of the ruler to experiment each time? 

(3) Suppose you are asked to measure a rectangular object. While calculating the value of its 

area, shall you first obtain the averages of the length and the width by the measured data, 
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and then calculate the value of the area by the product of them; or shall you instead calculate 

the values of the area for each measurement first, and then have their average to be the 

result? Explain. 

(4) Discuss the systematic effect that occurs during the experiments. What are they, and how 

do they influence the results? 

 (5) Is it possible for you to design a vernier caliper with its accuracy to be 0.02 mm ? Explain. 

(6) (3.10) and (3.11) seem to give different results for the uncertainty of 
2x . Which one is 

correct? Explain. 

(7) What is the difference between accuracy and precision?  
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